สารบัญภาพ

	หน้า
ภาพที่ 1.1 ตัวอย่างเครื่องดื่มผสมวิตามินซี	2
ภาพที่ 1.2 ความสำคัญของเคมีวิเคราะห์ต่อศาสตร์ด้านอื่น ๆ	4
ภาพที่ 1.3 การแบ่งประเภทของเทคนิคการวิเคราะห์ทางเคมี	12
ภาพที่ 1.4 ขั้นตอนการวิเคราะห์	13
ภาพที่ 1.5 แนวคิดการเตรียมตัวอย่างสำหรับการวิเคราะห์	20
ภาพที่ 1.6 การเผาตัวอย่างในเตาเผา (ก) ตัวอย่างทำการระเหยตัวทำลาย (ข) เผาด้วยเตาเผา	
และ (ค) ส่วนที่เหลือจากการเผา	22
ภาพที่ 1.7 เครื่องย่อยด้วยคลื่นไมโครเวฟ	24
ภาพที่ 1.8 ลักษณะทั่วไปของหลอดสำหรับบรรจุตัวอย่างและสารเคมี	25
ภาพที่ 1.9 ขั้นตอนการเตรียมสารละลายจากสารสถานะของแข็ง	51
ภาพที่ 2.1 แสดงค่าเฉลี่ยและลักษณะการกระจายตัวของข้อมูล	62
ภาพที่ 2.2 กรอบแนวคิดของความคลาดเคลื่อนแบบควบคุมได้	66
ภาพที่ 2.3 กรอบแนวคิดการใช้วัสดุอ้างอิงรับรอง	67
ภาพที่ 2.4 แสดงความแตกต่างระหว่างความแม่นและความเที่ยงของการวัด	69
ภาพที่ 2.5 ตัวอย่างวัสดุอ้างอิงรับรองธาตุปริมาณน้อยมากในน้ำของ NIST (SRM 1643f)	73
ภาพที่ 2.6 ตัวอย่างวัสดุอ้างอิงรับรองธาตุปริมาณน้อยมากในน้ำดื่มของ TRM	74
ภาพที่ 2.7 กราฟการแจกแจงปกติ	76
ภาพที่ 2.8 กรอบแนวคิดการตัดค่าที่อยู่นอกช่วงออกจากข้อมูล	78
ภาพที่ 2.9 กรอบแนวคิดการทดสอบเอฟ	87
ภาพที่ 2.10 แนวคิดการเปรียบเทียบค่าเฉลี่ยของกลุ่มตัวอย่างกับค่าจริงโดยอาศัยการทดสอบที.	88
ภาพที่ 2.11 แนวคิดการเปรียบเทียบค่าเฉลี่ยของข้อมูล 2 ชุดโดยอาศัยการทดสอบที	89
ภาพที่ 2.12 ลักษณะกราฟแบบแผนกระจาย	97
ภาพที่ 2.13 การสร้างเส้นแนวโน้ม	98
ภาพที่ 2.14 การหาค่าสัมประสิทธิ์สหสัมพันธ์	98
ภาพที่ 3.1 กรอบแนวคิดการวิเคราะห์โดยน้ำหนัก	113
ภาพที่ 3.2 แนวทางการเกิดนิวคลีเอชันและการเติบโตของอนุภาค	115
ภาพที่ 3.3 แผนผังแสดงกระบวนการเกิดตะกอน	116
ภาพที่ 3.4 การดูดซับที่ผิวตะกอนซิลเวอร์คลอไรด์	118
ภาพที่ 3.5 ลักษณะการปนเปื้อนโดยการตกตะกอนร่วม	119
ภาพที่ 3.6 กรอบแนวคิดการคำนวณโดยการตะกอน	122
ภาพที่ 3.7 บิวเรต	132
ภาพที่ 3.8 อุปกรณ์สำหรับการวิเคราะห์โดยการไทเทรต	132

ภาพที่	3.9 [.]	ระดับสายตาการวัดสเกลบนบิวเรต	133
ภาพที่	3.10	การไทเทรต (ก) บรรจสารละลาย และ (ข) ลักษณะการจับก๊อกหยด	
		และการกวนสารละลาย	134
ภาพที่	3.11	สีของสารละลาย (ก) ก่อนไทเทรตสารละลายใส (ข) ขณะไทเทรต และ	
		(ค) จดยติ สารละลายเปลี่ยนสีอย่างถาวร	134
ภาพที่	3.12	กรอบแนวคิดของสารละลายมาตรฐาน	137
ภาพที่	4.1	เซลล์เคมีไฟฟ้า	152
ภาพที่	4.2	กรอบแนวคิดเซลล์เคมีไฟฟ้าประเภทเซลล์กัลวานิก	162
ภาพที่	4.3	องค์ประกอบของเซลล์กัลวานิก	
ภาพที่	4.4	แผนภาพเซลล์เคมีไฟฟ้า	165
ภาพที่	4.5	ส่วนประกอบ (ก) ขั้วไฟฟ้าคาโลเมลอิ่มตัว และ (ข) ขั้วไฟฟ้าซิลเวอร์-ซิลเวอร์คลอไ	รด์
•••••			
ภาพที่	46	• ขั้วไฟฟ้าไฮโดรเจบบาตรฐาบ	168
ภาพที่	4 7	เปรียงแทียบค่าศักย์ไฟฟ้าของขั้ว SHE_Ao/Ao/CI และ SCE	160
ภาพที่	4.8	เซลล์ดิเล็กโทรไลต์	169
ภาพที่	49	ตัวอย่างการซบโลหะด้วยกระแสไฟฟ้า	170
ภาพที่	4 10	ความต่างศักย์ไฟฟ้าใบเซลล์กัลวาบิกของ Zn/Cu	176
ภาพที่	4 1 1	เซลล์กัลวาบิก (ก) ขั้วไฟฟ้าไฮโดรเจบบาตรฐาบต่อกับขั้ว Zn/Zn ²⁺ และ	
		(ข) ขั้วไฟฟ้าไฮโดรเจบบาตรฐานต่อกับขั้ว Cu/Cu ²⁺	177
ภาพที่	51	ลงโกรณ์การไทเทรตงไภิกิริยากรด-เบส	<u>1</u> 93
ภาพที่	5.2	จุรารและการราชการไทเทรตปฏิกิริยากรด-เบส	194
ภาพที่	5.3	การสร้างกราฟการไทเทรตสารละลาย HCl ด้วยสารละลาย NaOH	198
ภาพที่	5.4	กราฟการไทเทรตสารละลาย HCl 0.100 mol/L ด้วยสารละลาย NaOH	
		0.100 mol/L	199
ภาพที่	5.5	การสร้างกราฟการไทเทรตสารละลาย KOH ด้วยสารละลาย HCl	201
ภาพที่	5.6	กราฟการไทเทรตของปฏิกิริยาระหว่างเบสแก่ด้วยกรดแก่	202
ภาพที่	5.7	กราฟการไทเทรตปฏิกิริยาระหว่าง HCl กับ NaOH ที่มีความเข้มข้นต่างกัน	
		(ก) HCl 0.100 mol/L กับ NaOH 0.100 mol/L (ข) HCl 0.0100 mol/L กับ	
		NaOH 0.0100 mol/L และ (ค) HCl 0.00100 mol/L กับ NaOH	
h		0.00100 mol/L	203
ภาพที 	5.8	การสร้างกราฟการไทเทรตปฏิกิริยาระหว่างสารละลาย NH₃ กับสารละลาย HCl	208
ภาพทิ	5.9	กราพการเทเทรตปฏกรยาระหวางเบสออน (NH₃ 0.100 mol/L) กบกรดแก (UCL 0.100 mol/L)	000
	F 4 A	(HCL U.100 mOl/L)	209
91. I.M.M	2.10	น เวล วางนวาพน เวรทเทรตระ พ วางนวิตอดหนุกกิณฑิน	213

หน้า

ภาพที่ 5.11 กราฟการไทเทรตระหว่างกรดอ่อน (CH₃COOH 0.100 mol/L) กับเบสแก่	
(NaOH 0.100 mol/L)	214
ภาพที่ 5.12 กราฟการไทเทรตระหว่างสารละลาย CH₃COOH กับสารละลาย NaOH	
ที่ความเข้มข้นต่าง ๆ (ก) CH₃COOH 0.100 mol/L กับ NaOH 0.100 mol/L	
(ข) CH₃COOH 0.0100 mol/L กับ NaOH 0.0100 mol/L และ (ค) CH₃COOH	
0.00100 mol/L กับ NaOH 0.00100 mol/L	214
ภาพที่ 5.13 การไทเทรตปฏิกิริยาการเกิดตะกอน (ก) การติดตั้ง และ (ข) กราฟการไทเทรต	220
ภาพที่ 5.14 การสร้างกราฟการไทเทรต (pAg) สารละลาย NaCl ด้วยสารละลาย AgNO ₃	224
ภาพที่ 5.15 การสร้างกราฟการไทเทรต (pCl) สารละลาย NaCl ด้วยสารละลาย AgNO3	224
ภาพที่ 5.16 กราฟการไทเทรตสารละลาย NaCl 0.00500 mol/L ปริมาตร 50.00 mL ด้วย	
สารละลาย AgNO₃ 0.100 mol/L (ก) pCl กับปริมาตรสาระลาย AgNO₃ และ	
(ข) pAg กับปริมาตรสารละลาย AgNO₃	225
ภาพที่ 5.17 แนวคิดการไทเทรตวิธีของโมร์	226
ภาพที่ 5.18 แสดงการดูดซับที่ผิวตะกอน (ก) ก่อนจุดสมมูล และ (ข) หลังจุดสมมูล	229
ภาพที่ 5.19 การไทเทรตคลอไรด์โดยวิธีของแฟแจนส์ (ก) ก่อนไทเทรต (ข) ก่อนถึงจุดยุติ และ	
(ค) หลังจุดยุติ	230
ภาพที่ 5.20 กราฟการไทเทรตระหว่างสารละลาย NaCl กับสารละลาย AgNO₃ ที่ความเข้มข้น	
ต่างๆ กัน (ก) สารละลาย NaCl 1.00 mol/L ด้วยสารละลาย AgNO3 1.00 mol/	L
(ข) สารละลาย NaCl 0.100 mol/L ด้วยสารละลาย AgNO₃ 0.100 mol/L และ	
(ค) สารละลาย NaCl 0.0100 mol/L ด้วยสารละลาย AgNO₃ 0.0100 mol/L	230
ภาพที่ 5.21 กราฟการไทเทรตสารละลาย X (เมื่อ X = Cl ⁻ , Br ⁻ , I ⁻) เข้มข้น 0.0500 mol/L	
ปริมาตร 50.00 mL ด้วยสารละลาย AgNO3 0.100 mol/L	231
ภาพที่ 5.22 แนวคิดการไทเทรตปฏิกิริยารีดอกซ์	240
ภาพที่ 5.23 โครงสร้างของอินดิเคเตอร์ (ก) เฟอร์โรอิน และ (ข) กรดไดฟีนิลลามีนซัลโฟนิก	243
ภาพที่ 5.24 วิธีโพเทนชิออเมตรี	243
ภาพที่ 5.25 เซลล์ไฟฟ้าและขัวไฟฟ้าที่ใช้ในการไทเทรตปฏิกิริยารีดอกซ์ (สารละลาย Fe ²⁺ กับ	
สารละลาย Ce ⁴⁺)	245
ภาพที่ 5.26 การสร้างกราฟการไทเทรตสารละลาย Fe ²⁺ ด้วยสารละลาย Ce ⁴⁺	249
ภาพที่ 5.27 กราฟการไทเทรตสารละลาย Fe ²⁺ 0.0500 mol/L ปริมาตร 50.00 mL ด้วย	
สารละลาย Ce ⁴⁺ 0.100 mol/L	250
ี่ ภาพที่ 5.28 สูตรโครงสร้างโมเลกุล EDTA	267
ภาพที่ 5.29 องค์ประกอบของอนุมูล EDTA ที่ pH ต่าง ๆ	270
ภาพที่ 5.30 สูตรโครงสร้างของไอออนเชิงซ้อน M-EDTA	271
ภาพที่ 5.31 การไทเทรตแบบเกิดไอออนเชิงซ้อนของสารละลาย EDTA (ก) การติดตั้ง และ	
(ข) กราฟการไทเทรต	275
ภาพที่ 5.32 กราฟการไทเทรตไอออนโลหะ M ⁿ⁺ เขมขน 0.010 mol/L ปริมาตร 50.00 mL	
กับสารละลาย EDTA 0.010 mol/L ที pH=6.0	275

ภาพท 5.33 กราพการเทเทรตสารละลาย Ca ²⁺ 5.00x10 ⁻³ mol/L ดวยสารละลาย EDTA	
0.0100 mol/L и pH 10.0	281
ภาพท 5.34 กราพการเทเทรตสารละลาย Ca ⁻⁺ ดวยสารละลาย EDTA ท pH 10.0	.281
311พท 5.35 ผสของ pH ทีมต่อกราพการเทเทรตสารสะสาย Ca 0.0100 mot/L	.283
31 โพท 5.36 ศา ph ต่าสุทสาทรบการเทเขางต่อยอนเสทะกับ EDTA	.283
	.294
ภาพที่ 6.2 การแกว่งกวัดของรังสีแม่เหล็กไฟฟ้าในสนามไฟฟ้าและสนามแม่เหล็ก	.294
ภาพที่ 6.3 สเปกตรัมรังสีแม่เหล็กไฟฟ้า	.297
ภาพที่ 6.4 รูปแบบการแทรนซิชันของอนุภาค	.298
ภาพที่ 6.5 ย่านของรังสีแม่เหล็กไฟฟ้าและชนิดการเปลี่ยนแปลงที่เกิดจากอันตรกิริยาของ	
โฟตอน กับสารที่สนใจ	.300
ภาพที่ 6.6 แผนภาพพลังงานของการดูดกลืนโฟตอน	.302
ภาพที่ 6.7 สเปกโทรสโกปีแบบดูดกลืน (ก) กำลังรังสีตกกระทบ (P ₀) ถูกดูดกลืนด้วยสารสนที่ใจ	
(ข) แผนภาพพลังงานของการดูดกลื่นโฟตอน และ (ค) ลักษณะสเปกตรัมดูดกลื่น	.302
ภาพที่ 6.8 แผนภาพพลังงานของการเปล่งโฟตอนของอะตอมหรือโมเลกุล	.303
ภาพที่ 6.9 สเปกโทรสโกปีแบบเปล่งออก	.303
ภาพที่ 6.10 สเปกตรัมการดูดกลืนของอนุภาคระดับนาโนเมตรของทองคำ	.304
ภาพที่ 6.11 ตัวอย่างสเปกตรัมการดูดกลืน	.304
ภาพที่ 6.12 สเปกตรัมดูดกลืนแสง (ภาพซ้าย) และโครงสร้าง (ภาพขวา) ของ (ก) คลอโรฟิลล์เอ	
(ข) คลอโรฟิลล์บี และ (ค) แคโรทีนอยด์	.305
ภาพที่ 6.13 แสงที่อาจเกิดขึ้นเมื่อแสงตกกระทบสารตัวอย่าง	.305
ภาพที่ 6.14 ความสัมพันธ์ระหว่างค่าการดูดกลืนกับร้อยละความส่งผ่าน	.306
ภาพที่ 6.15 การเบี่ยงเบนจากกฎของเบียร์	.308
ภาพที่ 6.16 ออร์บิทัลเชิงโมเลกุล	.314
ภาพที่ 6.17 แผนภาพการแทรนซิชันของซิกมาอิเล็กตรอน, ไพอิเล็กตรอน และอิเล็กตรอน	
ที่ไม่ได้สร้างพันธะ	.315
ภาพที่ 6.18 การแทรนซิชันของอิเล็กตรอนจาก HOMO ไปยัง LUMO	.316
ภาพที่ 6.19 แผนภาพการแทรนซิชันของ (ก) แก๊สไฮโดรเจน (H ₂) และ (ข) เอทิลีน	.316
ภาพที่ 6.20 สเปกตรัมการดูดกลืนของสารประกอบคาร์บอนิล (ก) แอซิโตน และ	
(ข) เททระฟีนิล ^ไ ซโคลเพนตะไดอีโนน	.318
ภาพที่ 6.21 ย่านความยาวคลื่นของการดูดกลืนเนื่องจากการแทรนซิชันของอิเล็กตรอน	.318
ภาพที่ 6.22 ผลของสเปกตรัมที่เกิดบาโทโครมิก ฮิปโซโครมิก ไฮเปอร์โครมิก และไฮโปโครมิก	.320
ภาพที่ 6.23 ผลของออกโซโครมบนเบนซีน	.321

ภาพที่	6.24	แผนภาพการถ่ายโอนอิเล็กตรอน (ก) จากลิแกนด์ไปยังโลหะ และ (ข) จากโลหะ	
		ไปยังลิแกนด์	. 322
ภาพที่	6.25	แผนภาพการถ่ายโอนประจุอิเล็กตรอน (ก) LMCT และ (ข) MLCT	. 322
ภาพที่	6.26	สเปกตรัมดูดกลืนแสงของไอออนเชิงซ้อนของเหล็ก-ฟีแนนโทรลีน	. 323
ภาพที่	6.27	แผนภาพส่วนประกอบหลักของเครื่องยูวี-วิสิเบิล สเปกโทรโฟโตมิเตอร์	. 324
ภาพที่	6.28	ส่วนประกอบหลักของเครื่องยูวี-วิสิเบิล สเปกโทรโฟโตมิเตอร์	. 324
ภาพที่	6.29	แหล่งกำเนิดแสง (ก) แผนภาพวงจรหลอดดิวทิเรียม และ (ข) สเปกตรัมของหลอด	
		ดิวทิเรียมและทังสเตน	. 325
ภาพที่	6.30	ชนิดตัวแยกแสงเดี่ยว (ก) ตัวกรองแสง (ข) ปริชึม และ (ค) เกรตติง	. 326
ภาพที่	6.31	ประเภทตัวแยกแสงเดี่ยวแบบเกรตติง	. 327
ภาพที่	6.32	ความกว้างของแถบแสงใช้งาน	. 328
ภาพที่	6.33	ลักษณะทั่วไปของคิวเวตต์	. 328
ภาพที่	6.34	สเปกตรัมการดูดกลืนของวัดสุที่ทำคิวเวตต์	. 329
ภาพที่	6.35	ตัววัดแสงชนิดโฟโตทิวป์	. 330
ภาพที่	6.36	ตัววัดแสงชนิดโฟโตมัลติพลายเออร์ทิวบ์ (ก) มองด้านบน และ (ข) มองด้านข้าง	. 330
ภาพที่	6.37	แผนภาพองค์ประกอบของเครื่องวัดการดูดกลืนชนิดลำแสงเดี่ยว	. 331
ภาพที่	6.38	สเปกโทรสโกปีชนิดลำแสงเดี่ยว diode array spectrophotometer	. 332
ภาพที่	6.39	องค์ประกอบของเครื่องวัดการดูดกลืนชนิดลำแสงคู่	. 333
ภาพที่	6.40	องค์ประกอบของเครื่องวัดการดูดกลืนชนิดลำแสงคู่ (ก) ตัววัดแสงสองตัว และ	
		(ข) ตัววัดแสงหนึ่งตัว	. 333
ภาพที่	6.41	สเปกตรัมดูดกลืนแสงของสารละลาย Co(NO3)2	. 338
ภาพที่	6.42	สเปกตรัมดูดกลืนแสงของสารละลาย Co(NO3)2	. 338
ภาพที่	6.43	กราฟมาตรฐานความเข้มข้น	. 339
ภาพที่	6.44	ไอออนเชิงซ้อนระหว่างเหล็ก(II) กับฟีแนนโทรลีน	. 340
ภาพที่	6.45	สารละลายไอออนเชิงซ้อนเหล็ก(II)-ฟีแนนโทรลีน	. 341
ภาพที่	6.46	กราฟมาตรฐานความเข้มข้นของไอออนเชิงซ้อนเหล็ก-ฟีแนนโทรลีน	. 341
ภาพที่	6.47	ผลการทำกราฟมาตรฐานเมทริกซ์แมทซ์มีความชั้นเท่ากัน	. 343
ภาพที่	6.48	ผลการทำกราฟมาตรฐานเมทริกซ์แมทซ์ความชั่นไม่เท่ากัน	. 343
ภาพที่	6.49	กราฟมาตรฐานของวิธีการเติมสารมาตรฐาน	. 344

หน้า